

 Navigation

 	
 index

 	
 next |

 	PyCon2013 Schedule & Notes 1.0 documentation

PyCon 2013 Schedule & Notes

Mark Ransom’s live notes from PyCon US 2013.

Thursday

	Tutorial: Managing Python App Performance

	Tutorial: Integrating Selenium and Sauce Labs into your Continuous Integration Build

Friday

	Messaging at Scale at Instagram

	This Old Video Site: How PBS streams video

	Making DISQUS Realtime

	Twisted Logic: Endpoints and Why You Shouldn’t Be Scared of Twisted

	Visualizing Github, Part I: Data to Information

	Python Profiling

	Transforming Code into Beautiful, Idiomatic Python

Saturday

	Who’s there? - Home Automation with Arduino/RaspberryPi

	Mobile Application Testing with Python and Selenium

	Designers + Developers: Collaborating on your Python project

Sunday

 Copyright 2013, Andrew Schoen.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 previous |

 	PyCon2013 Schedule & Notes 1.0 documentation

Tutorial: Managing Python App Performance

Presenter: Graham Dumpleton, New Relic

Track: Sponsor Tutorials

Description:

There’s no longer any question of whether dynamic languages are appropriate for both large and small scale apps–you use the languages and tools that get the job done. Python suits environments where rapid change is the norm.

Introduction to New Relic

New Relic uses monkey patching to inject their performance tracking code.
If you’re using gunicorn or wsgi, it’s a simple magic wrapper script.

They’re not doing full on profiling of the application because there is
too much overhead, so instead they use wrap the wsgi entry point and
monitor that.

They also have instrumentation for monitoring:

	Middlewares

	Database layer

	Templating

They will pull out the view handlers and use those as the transaction
names.

It’s not an exhausting stack trace, they try to strip out all sensitive
information, but they do give you a lot of the same information that you
would see in a django stack trace page.

Troubleshooting Common Application Problems

http://newrelic-python-kata.herokuapp.com/

It takes a few minutes for transactions to start showing up on their web
interface.

Once the transactions start showing up in your transaction list, click into
the transaction allows you to see a summary of the view, and you can drill
down into the actual SQL that’s being called.

Kata 1

In the example, we see that on the employee_list view, we’re getting 50
employees from the database, and for each employee we’re making another
request to the BioData and Payroll tables.

We can drill into the template to see that we’re making a seperate request
for each employee’s bio and payroll info.

Kata 2

A view is loading very slowly, we can drill into the transaction to see that
it is the template rendering that is taking all the time, so we are able to
drill in and see that we’re doing filtering in the template that should be
happening in the view.

Kata 3

New Relic will capture your exceptions instead of emailing them to you. This
way you can set threshholds so that if your application starts throwing a lot
of errors you will be notified.

In this kata, we’re using an view that caltulates factorials so that we can
pass in invalid values and see that some requests are throwing exceptions that
we can see the stack trace for them.

Kata 4

Making a request to a weather api to pull the weather for 10 different cities,
and it’s taking a while to load. We can see in the transaction breakdown that
it is the API call that is taking so much time. We can implement caching of
weather data to speed up page load times.

 Copyright 2013, Andrew Schoen.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyCon2013 Schedule & Notes 1.0 documentation

Tutorial: Integrating Selenium and Sauce Labs into your Continuous Integration Build

Presenter: Jason Carr, Sauce Labs

Track: Sponsor Tutorials

Description:

CI can be hard. Making Selenium a part of your CI infrastructure is even harder. This tutorial will cover the end-to-end process of adding Selenium infrastructure to your CI build using Sauce Labs, and integrations with Jenkins and Travis CI.

Selenium WebDriver

WebDriver lets you send your script to a WebDriver server to execute. The
script gets translated into commands to drive the browser, which then returns
a json response.

Sometimes you have to wait for the internet, but Selenium tests are run as
procedural scripts, so you will often have to put in explicit waits for things
to load.

Selenium in the Cloud

It’s possible to run your tests in the cloud on SauceLabs infrastructure, you
just specify desired_capabilities to the different features you want:

	browserName - Firefox

	platform - Linux

	etc

Security Through Purity They completely destroy a VM when you are done
running your tests, so your VM never gets used again, and you never get a VM
that was used by someone else.

Selenium is just a library, it’s not only for testing, it’s just for
controlling a browser from a script.

Quick Intro to Selenium

Some simple code examples:

>>> from selenium import webdriver
>>> driver = webdriver.Chrome()
>>> driver.get('http://www.google.com')
driver.title
>>> driver.title
u'Google'
>>> driver.find_element_by_name('q').send_keys('pycon')
>>> driver.title
u'pycon - Google Search'

Cloud Meets Local Deve

It’s possible to run tests on the SauceLabs cloud that are hitting your local
dev machine, using a built in vpn solution.

You can watch the tests running through a browser based VPN session directly
to the VM.

Tools To Use

	
	Jenkins Server

	
	Github plugin

	InjectEnv plugin

	Sauce OnDemand plugin

	virtuaenv/pip/distribute

	Selenium client library

	Sauce Connect

	Sauce Labs Account

	sauceclient library

Basic Steps

	Install Jenkins

	Install Sauce OnDemand plugin

	
	Configure Sauce OnDeminad plugin in Jenkins

	
	Enter your api username and api key

	Test your connection (button in the config page)

	Configure the git[hub] plugin

	Configure the github webhook configuration so that your tests get run on
every push

It’s possible to get unique ids for accessing test runs without passing
credentials around, which is good on a large team where you don’t want
everyone to have to log in to see test run output.

Dynamic Test Classes

https://github.com/santiycr/cssify/blob/master/tests/test_cssify_web.py

 Copyright 2013, Andrew Schoen.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyCon2013 Schedule & Notes 1.0 documentation

Messaging at Scale at Instagram

Presenter: Rick Branson

Track: II

Description:

As activity accelerated from just a few thousand activities per day to hundreds of millions, Instagram needed a reliable, scalable messaging infrastructure to distribute work and messages. In this talk, I’ll jump from a crash course in the abstract concepts of queueing into the implementation details & hard-earned know-how from experience building massive-scale Python-based systems.

https://us.pycon.org/2013/schedule/presentation/106/

Trying to get photos for friends of friends is expensive.

You should try to get out of the request ASAP.

Justin Beiber effect: Hundreds of thousands of followers.

Gearman & Python

	Persistence is slow

	Ran out of memory

	Pulling based, so workers pull

	Should have used Redis

Celery

	Fast

	Great Python support

	celeryd to keep things going

RabbitMQ

	Not as fast as Redis, but reasonably fast

	Mirrored broker nodes

	Over previsioned so they can burst up to higher capacity

Alerting

They use Sensu (Ruby)

Graphing

Graphite and statsd

Brokers

They use a round robin boker approach

Performance

	They push about 4,000 tasks per second

	~25,000 app threads publishing tasks

Why They Chose Celery

They cna get new engineers up to speed quickly

Scaling Out

	Back in the day Celey only supported 1 broker host

	They created kombu-multibroker

Gevent

Only some of their tasks run on gevent, some are on multiprocessing mode.
Celeryd_multi allows running tasks in different worker modes.

They us Gevent for anything network bound, and anything that needs network
bound functionality and local actions they split it up with callbacks.

Problems

	Slow tasks monopolize workers

	Running higher concurrency is inefficient

	Lower batch size is also inefficient

They isolated their feed delivery, because anything that you don’t want to get
backed up by slow tasks should be on its own worker.

They have three concurrenc levels

	Fast

	Feed (important)

	Default

They start new tasks out in default and then promote them to Fast as they prove
themselves to be fast.

Failures

It’s impossible to determine whether a task has died or is just really slow, so
it’s important that tasks be idempotent so thta you can retry.

You need acknowledgements for when tasks finish successfully.

They only pass self-contained, non-opaque data as arguments to tasks.

Tasks should execute within a few seconds, otherwise restarts take a long time
and they gum up the works. They use a soft time limit of 20 seconds, and a
hard time limit of 30 seconds.

Future

	They’d like to get better

	Utilize results storage and other celery features they aren’t using now

	Single cluster for control queues, becuas they’re breaking all the management

tools for Celery right now
* Eliminate their multi-broker shim (kombu-multibroker) now that celery

supports multiple brokers

 Copyright 2013, Andrew Schoen.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyCon2013 Schedule & Notes 1.0 documentation

This Old Video Site: How PBS streams video

Presenter: Edgar Roman

Track: II

Description:

Overview of how the Public Broadcasting Service streams video online. Learn how PBS uses python and other services to provide video streaming online. Talk will discuss lessons learned, explanation of video formats, and experiences with mobile device support. Talk will include recommendations for others to easily adopt similar practices to quickly host their own online video site.

https://us.pycon.org/2013/schedule/presentation/133/

Goals

PBS wants to be as accessible as possible, which means supporting as many
devices as possible.

H.264 is widely supported, but it lives under a legal cloud.

They want to play ads and have flexibility to support social sharing.

Delivery

You can use HTTP, but they use RTMP at PBS.

In 2009 the standard was 400kbps, but now it’s more like 800kbps to 1.2mpbs

Targets Devices

	
	Apple’s iOS

	
	No Flash

	Http Live Streaming (HLS)

	Auto bitrate adjust possible

	Any CDN will do

	Built-in player

	
	Android

	
	So many variants that it’s difficult to determine what the device will
support

	Later versions support HLS

	End up using MP4 baseline

HTML5 Video Tag

Great for supported devices, but doesn’t support the rich environment features
that they need, especially advertising and captioning.

There are some really good frameworks:

	VideoJS

	MediaElement

	JWPlayer

Transcoding

Local:

	ffmpeg

	x264
Handbrake

Online:

	Zencoder

	Encoding.com

They create 16 streams for each video, but they start wth 5 Mbps

Stealing

PBS offers free streaming lonline to there is less motivation to steal.

Beware of the DRM Graveyard

 Copyright 2013, Andrew Schoen.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyCon2013 Schedule & Notes 1.0 documentation

Making DISQUS Realtime

Presenter: Adam Hitchcock

Track: II

Description:

What does it take to add realtime functionality to a truly web scale app. The result is the DISQUS realtime system, a highly concurrent system for allowing web clients to subscribe to arbitrary events in the DISQUS infrastructure.

https://us.pycon.org/2013/schedule/presentation/46/

DISQUS

People are more engaged when things happen in real time.

They get a lot of traffic, over a billion hits per month.

They call it RealERtime.

They use:

	Thoonk

	Redis

	pub sub

	nginx

Real Time Progression

Old system was memcache pulling every 5 seconds.

New system is redis pub/sub and a Flask proxy cluster.

They quickly ran out of CPU on the Flask servers, so they moved things to a
backend server to handle formatting.

This was better, but the Flask servers were still growing too quickly.

Replaced Flask servers and HA Proxy servers with an Nginx pub endpoint.

Thoonk

The Thoonk queue takes post_save and post_delete hooks, sits on tops of Redis.

Provides job semantics (what’s claimed, what’s not)

Gevent

Gevent is the best thing ever, it lets you process things really fast.

Works with pipelines and mixins to compartmentalize logic.

Data pipelines using mixings (each mixin manipulates the data and passes it on).

Nginx is Great

Replaced webservers and redis pub/sub

http://wiki.nginx.org/HttpPushStreamModule

EventSource Lets the browser handle the async calls instead of making
javascript do it.

Testing

Darktime - Use existing network to load test, pull out a certain percentage of
your user base at the new code.

Darkesttime - Testing a single instance with a ton of traffic.

Measure everything - Especially when numers don’t match up, even if it’s
hardin a distributed system, and try to express things as +1 and -1 if you can.

When the pope was announced they saw over 6TB of traffic that day.

Lessons

	Do hard work early

	End-to-end acks are good, but expensive

	redis/nginx pubsub is effectively free

	Greenlets (gevent) are free too

Also

Check out HttpPushStreamModule!!!

 Copyright 2013, Andrew Schoen.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyCon2013 Schedule & Notes 1.0 documentation

Twisted Logic: Endpoints and Why You Shouldn’t Be Scared of Twisted

Presenter: Ashwini Oruganti

Track: III

Description:

This talk will be a survey of my learning experience adding new endpoint APIs
to Twisted, an event-driven networking engine (as a Google Summer of Code
project), with a special focus on the analysis of some of the horror stories
that surround Twisted. Right from the asynchronous I/O model to Deferreds: if
it scares you, we’ll figure a way out and see what the makers of Twisted say
when confronted.

https://us.pycon.org/2013/schedule/presentation/40/

Endpoints

Standardized APIs for connecting clients and listening for requests.

Example:

endpoint = TCP4ServerEndpoint(reactor, 8007)
endpoint.listen(Factory())

It’s Just Code

The Moral

	Don’t get flustered

	Don’t overthink

	Forget it’s Twisted

Read the code -> Solve the Problem

Callbacks can be confusing, and difficult to debug.

It’s very complicated, it’s even in the name (Twisted).

Part of the problem is that the idea of the Twisted framework is foreign, it’s
different than the other frameworks that we use (django, etc). But you’re
using Twisted because it has something that the other alternatives don’t have,
so even if the ideas around the framework are different than what you’re used
to, you know why you need it, so you have a frame of reference, you just need
to lean on that.

 Copyright 2013, Andrew Schoen.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyCon2013 Schedule & Notes 1.0 documentation

Visualizing Github, Part I: Data to Information

Presenter: Dana Bauer, Idan Gazit

Track: III

Description:

A treasure trove of data is captured daily by Github. What stories can that
data tell us about how we think, work, and interact? How would one go about
finding and telling those stories? This two-part talk is a soup-to-nuts tour of
practical data visualization with Python and web technologies, covering both
the extraction and display of data in illumination of a familiar dataset.

https://us.pycon.org/2013/schedule/presentation/112/

Data and Mapping

Github focuses a lot on charts and graphs because so much of the data that they
have focuses on activity over time.

They didn’t even know what data they had.

Ben Fry - Visualizing Data

It’s important to work with a team of people that have a mix of skills,
no steps in the process should be completed in isolation.

	Acquire

	Prase

	Filter

	Mine

	Represent

Acquiring the Data

	3.4 million users

	5.7 million repos

They pulled down the top 200 repos of the top 10 languages, put it in the cloud
on Amazon EC2, and started cloning all of the repos.

Working With The Data

Now they wanted to start working with their data.

They worked within iPython Notebook, but if they got disconnected it was still
a problem becuase they couldn’t see where they were currently at.

Not all of the information is in the git repos, such as users and github
specific information.

They had to hit Github’s API, but rate limiting was still an issue.

The data was changing constantly, so there was some distortion in the snapshot
of the data.

 Copyright 2013, Andrew Schoen.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyCon2013 Schedule & Notes 1.0 documentation

Python Profiling

Presenter: Amjith Ramanujam

Track: II

Description:

This talk will give a tour of different profiling techniques available for
Python applications. We’ll cover specific modules in Python for doing function
profiling and line level profiling. We’ll show the short comings of such
mechanisms in production and discuss how to do sampled profiling of specific
functions. We’ll finish with statistical profilers that use thread stack
interrogation.

https://us.pycon.org/2013/schedule/presentation/86/

cProfile

Python - Batteries Included. It comes with its own profiler, cProfile:

python -m cProfile my_scripy.py

Sometimes you get a ton of output, so you should save the output to a file:

python -m cProfile -o file.prof my_script.py

RunSnakeRun is a GUI interface for analyzing profile files created with
cProfile.

A Catch

Using the profiler adds overhead to your code, and it runs slower, so you don’t
want to run the profiler in production.

It’s slow

So you could only profile critical functions by using a decorator to start the
profiler at the beginning of the function and turn it off at the end.

Most likely your critical functions are the ones you wnat to be fast, so you
don’t want them being profiled all the time.

Statistical Profiler

Kind of like an Overly Attached Girlfriend.

Interrupted - “Hey”
Inquired - “Where are you? What are you doing?”
Collate - “You don’t love me anymore!”

This all has overhead.

Inquire: Stack frame of every thread, every 100 ms.:

>>> import sys, traceback
>>> frames = sys._current_frames()
>>> stack = traceback.extract_stack(frames)

StatProf Uses unix signals and the CLI to profile stack traces.

Plop Uses unix signals with a callback.

X-Ray Sessions

Was secret, but now it’s in beta. What it does is, you can pick a specific
page and you want as much information as possible. You can run an x-ray
session on that page and they will collect the first 100 traces (transactions)
that run on that page.

Normally you only get targeted instrumentation, but this will run the profiling
on the entire trace, so you can come look at the profile and see exactly what’s
going on. They also provide you with histograms of those 100 requests, so you
can see exactly what percentage of those requests fell within a secific range.

 Copyright 2013, Andrew Schoen.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 previous |

 	PyCon2013 Schedule & Notes 1.0 documentation

Transforming Code into Beautiful, Idiomatic Python

Presenter: Raymond Hettinger

Track: VI

Description:

Learn to take better advantage of Python’s best features and improve existing
code through a series of code transformations, “When you see this, do that
instead.”

https://us.pycon.org/2013/schedule/presentation/126/

Examples:

for x in range(len(colors)):
 print colors[x]

Should be
for x in colors:
 print colors

n = min(len(names), len(colors))
for i in range(n):
 print names[i], '-->', colors[i]

Should be
for name, color in zip(names, colors):
 print name, '-->', color

But zip is slow, so you should use izip:
for name, color in izip(names, colors):
 print name, '-->', color

Awesome components:

	zip/izip

	defaultdict

	Chain

	deque

	localcontext

	with open() as f:

	with ignored(SpecificException): do something that could throw an exception

 Copyright 2013, Andrew Schoen.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyCon2013 Schedule & Notes 1.0 documentation

Who’s there? - Home Automation with Arduino/RaspberryPi

Presenter: Rupa Dachere

Track: II

Description:

Have you ever found yourself obsessively checking UPS or FedEx tracking site to
see if your package finally got delivered at your doorstep? Or wondered when
your contractor/gardener showed up to do their job?
Come join me to learn how to build your own gadget to notify you when your
package or contractor shows up at your doorstep!

https://us.pycon.org/2013/schedule/presentation/75/

Who’s At The Door?

Wanted to be able to see who was at the door.

Arduino with a proximity sensor -> USB -> Raspberry Pi with a webcam -> take a
picture and upload to web -> SMS message using Twillio with a link to the
picture.

 Copyright 2013, Andrew Schoen.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 previous |

 	PyCon2013 Schedule & Notes 1.0 documentation

Mobile Application Testing with Python and Selenium

Presenter: Jason Carr

Track: IV

Description:

Selenium has grown to be a mature platform on the desktop, but with ‘mobile
now’ being the mantra for so many companies, can we use Selenium to effectively
test mobile apps? What about Native apps? This talk will cover using Python to
test mobile web applications with Selenium, as well as an in depth overview of
the future of Selenium to test Native iOS and Android applications.

https://us.pycon.org/2013/schedule/presentation/79/

Selenium is Just a Library

It’s a tool, like anything else, and it has its place in your toolbelt.

Selenium RC is the old bustedness. It doesn’t support some mobile browsers,
things like that.

Selenium WebDriver is the new hotness, aka Selenium 2. It supports mobile
browsers.

It is pruposed that the low level web driver functionality will become a
standard and will be built directly into browsers in the future.

Using Selenium on a Mobile Browser

Every mobile browser is a webdriver, because it’s not running on your computer
that is running the actual Selenium script:

from selenium import webdriver

desired_capabilities = {}
desired_capabilities['browser'] = 'android'
desired_capabilities['platform'] = 'linux'
desired_capabilities['version'] = '4.0'

iOS

iOS Webdriver is gimped, won’t even let you quit, clear cache, etc, and it requires Xcode.

Android

	Requires the Android SDK

	An APK is created that you run in the emulator

	Setup is hard and annoying

Setup

	Boot up emulator

	Connect to adb server

	Install the .apk file

	Forward tcp:8080 to tcp:8080 on the phone

	Run your Selenium test

Limitations

WebViews - A window to the internet provided by the OS that you can put in your
app, they aren’t maintained the same way as full fledged browsers. Second
class citizens.

They are hard to accurately test, and it’s hard to test on hardware devices.

Native App Testing

iOS*

Currently the only option is UI Automation

	Javascript only

	Limited command line control

	No interaction with test

Android

Not much better, UI Automator

	Java tests, compiled and pushed as jars

	No interaction

	No test interoperability

Alternativess

	Require recompiling apps to add code

	Varias APIs

	Mixed community and limited help

	Forced language implementation, so you can’t use the tools you want

This is all BAD

Enter Appium

	No recompilation of app required, so what you test against is what you can

deploy to the app store
* Use Selenium API
* All methods are first class citizens, they wrap the test frameworks that the
companies provide to you
* Any language and OS, supported by Selenium
* Open source

Wraps UI Automation and UI Instruments

Because it uses the native testing framework (and wraps it), it supports all of
the browser and device functionality that the native testing framework exposes.

iOS

Your Script -> Appium Server -> iOS UI Instruments -> Test App

Android

Your Script -> Appium Server -> Android UI Automator -> Test App

What’s Next

They not only wrapped the native UI Automation functionality, but they also
wrapped the Mobile Webkit implementation, because they want it to work on real
devices. We want ito test W3C compliant browsers whenever possible.

	Drive a real browser

	Actual rendering

	Standards compliant

 Copyright 2013, Andrew Schoen.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 previous |

 	PyCon2013 Schedule & Notes 1.0 documentation

Designers + Developers: Collaborating on your Python project

Presenter: Julia Elman, Mark Lavin

Track: II

Description:

Working in teams is an important part of what we do as developers & designers.
Whether it’s desktop applications or mobile sites, we work together to create
successful end products. But how do we work together in different environments?
What is the best work-flow for a mix of skill sets?

We’ll be talking about our various methods & work-flows that we found
successful in working collaboratively.

https://us.pycon.org/2013/schedule/presentation/56/

You’ve Got an Idea

Sometimes you get an idea for a project, you start mulling it over and
eventually you decide to work on it and try to make something. You might start
recruiting people, and you’re likely going to recruit from your circle of
friends, which means that they are probably a lot like you.

A Designer

Maybe you should try to recruit a designer? A stock UI framework (Twitter
Bootstrap, for example) will only get you so far.

You need to bring in people who compliment your skillset, because if you bring
in more people like you, than the will help you get things done faster, but
maybe not better.

Beware Too Many Cooks

Keep your team compact, be selective, but seek for diversity.

Comfort Zones

Be careful not to go off into your own world and do your own thing, then try to
smash the whole thing together at the end. Don’t work in a silo. Be willing
to get outside of your comfert zone and expertise. Other people need your
feedback, even if you’r enot an expert in their line of work, because you can
have ideas that they might not think about.

Designers

It can be scary for designers (or anyone, really) to try to work with the
terminal, it can be very intimidating. But designers should just dive in.

One of the best parts of collaboration is the knowledge exchange. Developers
should be patient and help the designers, answer questions, and direct them to
good tools. It will make your life easier to have your team up to speed.

Developers

We have to be willing to give up some control. Many developers fall into two
categories:

	They don’t have the confidence to say what is good design and what isn’t

	They don’t care enough to pay attention

You can and should know what good design is. Pay attention to things that work
intuitively, make a mental note of them, bring that to the table.

Developers should work on being better designers, think about how to make your
software more intuitive for the users.

Automation

Use your expertise to remove the cruft so that you can focus on the idea.
Automate the menial tasks.

	Setting up dev environment

	Deployments

	Builds

	Testing

Let designers and developers focus on the details of the idea.

Documentation

Document everything you can’t automate. Tailor those documents to every type
of person that needs them. If you want people to get involved in your awesome
idea, you should document what you have so far.

Bottom Line

In good collaboration you are stretched beyond your skillset and you learn
something.

Also, in a good collaboration, failure becomes an option, because the act of
the collaboration becomes the real positive outcome. The success of the
projcet itself matters less because you have improved yourself.

It’s ok to fail in a good collaboration, as long as you don’t fail at
collaborating.

Example

Wanted in page editing, using the power of the Django templating language, and
wanted the developer to be able to put in sane defaults for when there isn’t
anything in the database.

Inventing on Principle by Bret Victor - You should be able to see what you’re
changing, while you’re changing.
vimeo.com/36579366

Developers start thinking about the technical challenges right away, they start
thinking about what they know they can do, and become sceptical.

They started talking about it to people, who shared additional ideas.

Django Scribbler - http://www.github.com/caktus/django-scribbler/

Closing Thoughts

People can contribute a lot more to a project than just git commits.

 Copyright 2013, Andrew Schoen.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	PyCon2013 Schedule & Notes 1.0 documentation

Index

 Copyright 2013, Andrew Schoen.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		PyCon2013 Schedule & Notes 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Andrew Schoen.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/up.png

README.html

 Navigation

 		
 index

 		PyCon2013 Schedule & Notes 1.0 documentation »

PyCon 2013 Notes

Dates: March 14th - 17th 2012

Location: Santa Clara, CA

 © Copyright 2013, Andrew Schoen.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

friday/keynote_2.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		PyCon2013 Schedule & Notes 1.0 documentation »

Keynote: Paul Graham, YCombinator

This is way bigger than the last PyCon we talked at. It was 2002. Just a small fraction of the attendance today.

What is silicon valley like?

		The center of silicon valley moves around.

		Where is the greatest collection of people who want to make stuff happen

We are in the center of silicon valley right now, right here

A list of 7 Giant startup ideas (be a billionaire!!)

		The biggest startup ideas are frightening

		The threaten your identity

		Start the next google

		The right ideas are just on the right side of impossible

		
		Microsoft really lost their way when they got into the search business

		
		The did this because they were afraid of Google

		Google may have peaked, but doesn’t mean there is a room for a new search engine

		Paul is nostalgic to the old google.

		Now results are like scientology results. What’s true is true for you (big laughs)

Find the tiny thing that turns into the giant idea. Find the dinosaur egg.

Replace Google

		make a search engine that all the hackers use

		Maybe only 10,000 users but you’d be in a powerful position

		Make the search engine you want

Replace Email

		Email is a to-do list not communication

		But it’s a shitty to-do list

		Tweaking the inbox is not enough

		Make a to-do list protocal

		Gives more power to the receipent

		People send emails to themselves is proof of this (I do this all the time)

		Entreanched protocols are almost impossible to replace

		But it’s time

		
		Powerful people are in pain because of email

		
		This means you can make money on this idea!!

		You have a dinosaur chicken!

		Build it and make it fast

		He could justify spending tons of money on this

Replace Universities

		Is reluctant to suggest this.

		The last couple decades universities have went down a bad path

		They are like expensive country clubs

		
		Might get replaced by a whole bunch of little things

		
		Many will not look like universities at all

		Change the way people learn

		
		Universities are kinda like a credential at this point

		
		So maybe crenditals have to be done outside of this

Kill Hollywood

Huge Applause

		Slow to embrace the internet

		
		Can now call the winner for delievry mechanism for entertainment

		
		It is the Internet

		Hates TVs

		Some of the attention people spend watching TV can be stole by other things

		Still a residual demand for people who want to watch a story unfold

		
		How do we deliver drama via the Internet

		
		Must be on a larger scale than YouTube

		Two ways delivery and payment can play out

A new Apple

		Was talking to somebody who knew Apple well. Asks the question, “Post Steve Jobs can Apple still innovate” Answer: No

		
		Who is going to make the next iPad

		
		Maybe none of the existing players

		Only want to get a product visionary as CEO is for that person to start the company. (And that person doesn’t get fired)

		The next Apple is a start up

		Who’s going to make the future

		
		There is a vacuum. Ready for a new company to lead the way.

		
		People are used to following

Bring back the old Moore’s Law

		Hardware was solving softwares problems

		Not anymore

		Would be great if a start up could give back something of the old Moore’s Law

		Make many CPU’s look and act like one super fast one

		Programmers like convience

		In world of web services we don’t see processors anymore

		Instead of the compiler, build stuff out of smaller components. (hadoop, map / reduce)

		
		Create a market place for optimization

		
		Write bots to do the optimization

Ongoing Diagnosis

		Imagine the ways we will seem backwards to people in the future

		
		Ridiculous we have to wait for symptoms to know we have problems

		
		Example: heart problems

		Have to wait until your arteries are 90% blocked to know there is a problem

		Surely, in the future this will happen. People will know how blocked their arteries are like their weight

		Next example, Cancer

		Traditionally you feel symptoms, go to the Dr. Need to start looking for problems pro-actively.

		If people are scanned all the time - there will be less freak-out moments

		Going against thousand of years of medical history

Conclusion

		If you want to take on a problem, don’t make a frontal attack.

		Don’t say you’re replacing email, say you’re building to-do list software

		Start with small things, make them bigger

		Start small for your own sake, not for other people

		
		Bigger your ambitions the longer they take to realize

		
		The more you have to look into the future, the more you’ll be wrong

		Columbus “There is something in the West”

		Blurry view of the future is the best

Questions

		The idea of what is property? What is convient to be called property. Land didn’t used to be, but it is now.

		Now files move around like smells. Doesn’t make sense to charge people for copies anymore.

		
		Question about Replacing universities. Other value to them than learning.

		
		Would it be bad if people don’t physically meet? Things have to happen in person.

		Things can be made that involve people meeting in person.

		Get a degree from people, not institutions

		Maybe universities used to be like this

 © Copyright 2013, Andrew Schoen.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/down.png

_static/plus.png

friday/keynote_1.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		PyCon2013 Schedule & Notes 1.0 documentation »

aeynote: Speaker Name, Company

Heading

Text goes here

Bolded text goes here

Another Heading

		This

		Is

		
		A List

		
		This

		Is a

		Sub list

 © Copyright 2013, Andrew Schoen.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/comment.png

_static/ajax-loader.gif

_static/file.png

thursday/tutorial_3.html

 Navigation

 		
 index

 		PyCon2013 Schedule & Notes 1.0 documentation »

Tutorial: Scaling and Monitoring Python in the Cloud

Presenter: John Wetherill, ActiveState

Track: Sponsor Tutorials

Description:

Just because your Python app is in the cloud doesn’t make scaling effortless. The cloud presents complex infrastructure and development challenges that ultimately bring resources to bear on you and your application.

PaaS is the Future

Like a wave, “Platform as a Service” is rolling in from miles off shore.

Stackato is a platform management suite that allows you to setup your own full
stack cloud service that can be managed through a web or command line interface.

 © Copyright 2013, Andrew Schoen.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/down-pressed.png

